0.2 C
Washington

Instance Optimal Private Density Estimation in the Wasserstein Distance

Estimating the density of a distribution from samples is a fundamental problem in statistics. In many practical settings, the Wasserstein distance is an appropriate error metric for density estimation. For example, when estimating population densities in a geographic region, a small Wasserstein distance means that the estimate is able to capture roughly where the population mass is. In this work we study differentially private density estimation in the Wasserstein distance. We design and analyze instance-optimal algorithms for this problem that can adapt to easy instances.
For distributions PPP over R\mathbb{R}R, we consider a strong notion of instance-optimality: an algorithm that uniformly achieves the instance-optimal estimation rate is competitive with an algorithm that is told that the distribution is either PPP or QPQ_PQP​ for some distribution QPQ_PQP​ whose probability density function (pdf) is within a factor of 2 of the pdf of PPP. For distributions over R2\mathbb{R}^2R2, we use a different notion of instance optimality. We say that an algorithm is instance-optimal if it is competitive with an algorithm that is given a constant-factor multiplicative approximation of the density of the distribution. We characterize the instance-optimal estimation rates in both these settings and show that they are uniformly achievable (up to polylogarithmic factors). Our approach for R2\mathbb{R}^2R2 extends to arbitrary metric spaces as it goes via hierarchically separated trees. As a special case our results lead to instance-optimal private learning in TV distance for discrete distributions.

━ more like this

Newbury BS cuts resi, expat, landlord rates by up to 30bps  – Mortgage Strategy

Newbury Building Society has cut fixed-rate offers by up to 30 basis points across a range of mortgage products including standard residential, shared...

Rate and Term Refinances Are Up a Whopping 300% from a Year Ago

What a difference a year makes.While the mortgage industry has been purchase loan-heavy for several years now, it could finally be starting to shift.A...

Goldman Sachs loses profit after hits from GreenSky, real estate

Second-quarter profit fell 58% to $1.22 billion, or $3.08 a share, due to steep declines in trading and investment banking and losses related to...

Building Data Science Pipelines Using Pandas

Image generated with ChatGPT   Pandas is one of the most popular data manipulation and analysis tools available, known for its ease of use and powerful...

#240 – Neal Stephenson: Sci-Fi, Space, Aliens, AI, VR & the Future of Humanity

Podcast: Play in new window | DownloadSubscribe: Spotify | TuneIn | Neal Stephenson is a sci-fi writer (Snow Crash, Cryptonomicon, and new book Termination...