0.9 C
Washington

MINT-1T Dataset Released: A Multimodal Dataset with One Trillion Tokens to Build Large Multimodal Models

Artificial intelligence, particularly in training large multimodal models (LMMs), relies heavily on vast datasets that include sequences of images and text. These datasets enable the development of sophisticated models capable of understanding and generating multimodal content. As AI models’ capabilities advance, the need for extensive, high-quality datasets becomes even more critical, driving researchers to explore new data collection and curation methods.

A significant challenge in AI research is the need for large-scale, open-source, multimodal interleaved datasets. These datasets are essential for training models seamlessly integrating text and image data. The limited availability of such datasets hampers the development of robust and high-performing open-source models, resulting in a performance gap between open-source and proprietary models. Addressing this gap requires innovative approaches to dataset creation that can provide the necessary scale and diversity.

Existing methods for creating multimodal datasets often involve collecting and curating data from HTML documents. Notable datasets like OBELICS have been instrumental but are limited in scale and diversity, primarily sourcing data from HTML. This restriction affects the variety and richness of the data, impacting the performance and applicability of the resulting AI models. Researchers have found that datasets sourced solely from HTML documents must capture the full spectrum of required multimodal content for comprehensive model training.

Researchers from the University of Washington, Salesforce Research, Stanford University, the University of Texas at Austin, and the University of California Berkeley introduced MINT-1T, the most extensive & diverse open-source multimodal interleaved dataset to date, addressing the need for larger and more varied datasets. MINT-1T comprises one trillion text tokens and 3.4 billion images from HTML, PDFs, and ArXiv papers. This dataset represents a tenfold increase from previous datasets, significantly enhancing the data for training multimodal models. Institutions such as the University of Washington and Salesforce Research collaborated on this initiative, demonstrating a concerted effort to bridge the gap in dataset availability.

Creating the MINT-1T dataset involved an intricate process of sourcing, filtering, and deduplicating data. HTML documents were expanded to include data from earlier years, and PDFs were processed to extract readable text and images. ArXiv papers were parsed for figures and text, ensuring a comprehensive collection of multimodal content. Advanced filtering methods were employed to remove low-quality, non-English, and inappropriate content. Deduplication processes were also implemented to eliminate repetitive data, ensuring the dataset’s quality and diversity.

Experiments demonstrated that LMMs trained on the MINT-1T dataset matched and often surpassed the performance of models trained on previous leading datasets like OBELICS. Including more diverse sources in MINT-1, T resulted in better generalization and performance across various benchmarks. Notably, the dataset significantly improved performance in tasks involving visual question answering and multimodal reasoning. The researchers found that models trained on MINT-1T performed better across multiple demonstrations, highlighting the dataset’s effectiveness.

The MINT-1T dataset’s construction included detailed steps to ensure data quality and diversity. For instance, the dataset consists of 922 billion HTML tokens, 106 billion PDF tokens, and 9 billion ArXiv tokens. The filtering process involved eliminating documents with inappropriate content and non-English texts, using tools like Fasttext for language identification and NSFW detectors for image content. The deduplication process was crucial, involving Bloom filters to remove duplicate paragraphs and documents and hashing techniques to eliminate repetitive images.

In conclusion, the MINT-1T dataset addresses dataset scarcity and diversity. By introducing a larger and more varied dataset, the researchers have enabled the development of more robust and high-performing open-source multimodal models. This work highlights the importance of data diversity and scale in AI research and paves the way for future improvements and applications in multimodal AI. The dataset’s extensive scale, including one trillion text tokens and 3.4 billion images, provides a solid foundation for advancing AI capabilities.

Check out the Paper, Details, and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 47k+ ML SubReddit

Find Upcoming AI Webinars here

Asif Razzaq is the CEO of Marktechpost Media Inc.. As a visionary entrepreneur and engineer, Asif is committed to harnessing the potential of Artificial Intelligence for social good. His most recent endeavor is the launch of an Artificial Intelligence Media Platform, Marktechpost, which stands out for its in-depth coverage of machine learning and deep learning news that is both technically sound and easily understandable by a wide audience. The platform boasts of over 2 million monthly views, illustrating its popularity among audiences.

━ more like this

Newbury BS cuts resi, expat, landlord rates by up to 30bps  – Mortgage Strategy

Newbury Building Society has cut fixed-rate offers by up to 30 basis points across a range of mortgage products including standard residential, shared...

Rate and Term Refinances Are Up a Whopping 300% from a Year Ago

What a difference a year makes.While the mortgage industry has been purchase loan-heavy for several years now, it could finally be starting to shift.A...

Goldman Sachs loses profit after hits from GreenSky, real estate

Second-quarter profit fell 58% to $1.22 billion, or $3.08 a share, due to steep declines in trading and investment banking and losses related to...

Building Data Science Pipelines Using Pandas

Image generated with ChatGPT   Pandas is one of the most popular data manipulation and analysis tools available, known for its ease of use and powerful...

#240 – Neal Stephenson: Sci-Fi, Space, Aliens, AI, VR & the Future of Humanity

Podcast: Play in new window | DownloadSubscribe: Spotify | TuneIn | Neal Stephenson is a sci-fi writer (Snow Crash, Cryptonomicon, and new book Termination...